Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
نویسندگان
چکیده
The Ca(2+)/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca(2+)-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca(2+)/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase (CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.
منابع مشابه
CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle.
Multiple signals have been shown to be involved in regulation of fatty acid (FA) and glucose metabolism in contracting skeletal muscle. This study aimed to determine whether a Ca(2+)-stimulated kinase, CaMKK, is involved in regulation of contraction-induced substrate metabolism and whether it does so in an AMP-activated protein kinase (AMPK)-dependent manner. Rat hindlimbs were perfused at rest...
متن کاملCaffeine-induced Ca release increases AMPK-dependent glucose uptake in rodent soleus muscle
Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JF, Richter EA. Caffeine-induced Ca release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293: E286–E292, 2007. First published April 3, 2007; doi:10.1152/ajpendo.00693.2006.—Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-ac...
متن کاملLeucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle.
Leucine has profound effects on glucose metabolism in muscle; however, the effects of leucine on glucose transport in muscle have not been well documented. We investigated the effects of leucine on contraction- and insulin-stimulated glucose transport in isolated rat epitrochlearis muscle in vitro. In the absence of insulin, tetanic contraction increased 3-O-methyl-D-glucose (3-MG) transport an...
متن کاملAMP-activated protein kinase activity and glucose uptake in rat skeletal muscle.
The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPK alpha 1 and AMPK alpha...
متن کاملCaffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007